The retrograde spread of synaptic potentials and recruitment of presynaptic inputs.
نویسندگان
چکیده
Lateral excitation is a mechanism for amplifying coordinated input to postsynaptic neurons that has been described recently in several species. Here, we describe how a postsynaptic neuron, the lateral giant (LG) escape command neuron, enhances lateral excitation among its presynaptic mechanosensory afferents in the crayfish tailfan. A lateral excitatory network exists among electrically coupled tailfan primary afferents, mediated through central electrical synapses. EPSPs elicited in LG dendrites as a result of mechanosensory stimulation spread antidromically back through electrical junctions to unstimulated afferents, summate with EPSPs elicited through direct afferent-to-afferent connections, and contribute to recruitment of these afferents. Antidromic potentials are larger if the afferent is closer to the initial input on LG dendrites, which could create a spatial filtering mechanism within the network. This pathway also broadens the temporal window over which lateral excitation can occur, because of the delay required for EPSPs to spread through the large LG dendrites. The delay allows subthreshold inputs to the LG to have a priming effect on the lateral excitatory network and lowers the threshold of the network in response to a second, short-latency stimulus. Retrograde communication within neuronal pathways has been described in a number of vertebrate and invertebrate species. A mechanism of antidromic passage of depolarizing current from a neuron to its presynaptic afferents, similar to that described here in an invertebrate, is also present in a vertebrate (fish). This raises the possibility that short-term retrograde modulation of presynaptic elements through electrical junctions may be common.
منابع مشابه
Retrograde synaptic communication via gap junctions coupling auditory afferents to the Mauthner cell.
Large myelinated club endings of the goldfish eighth nerve arise in the sacculus and establish mixed electrotonic and chemical synapses with the distal part of the Mauthner (M-) cell's lateral dendrite. We show here, using paired pre- and postsynaptic recordings, that depolarizing currents generated postsynaptically (specifically, the mixed synaptic potential produced by activation of part of t...
متن کاملPresynaptic Dendrites : Implications of Spikeless Synaptic Transmission and Dendritic Geometry
Two recent developments have modified our traditional concept of the neuron: output synapses have been discovered intermixed with input synapses and synaptic transmission has been shown to grade with presynaptic voltage. In a number of invertebrate spikeless and spiking neurons, synaptic transmission lasts for the duration of the presynaptic depolarization . There is a threshold presynaptic vol...
متن کاملShort-term retrograde inhibition of GABAergic synaptic currents in rat Purkinje cells is mediated by endogenous cannabinoids.
Depolarization-induced suppression of inhibition (DSI) is a form of short-term plasticity of GABAergic synaptic transmission that is found in cerebellar Purkinje cells and hippocampal CA1 pyramidal cells. DSI involves the release of a calcium-dependent retrograde messenger by the somatodendritic compartment of the postsynaptic cell. Both glutamate and endogenous cannabinoids have been proposed ...
متن کاملA Null Mutation for the 3 Nicotinic Acetylcholine (ACh) Receptor Gene Abolishes Fast Synaptic Activity in Sympathetic Ganglia and Reveals That ACh Output from Developing Preganglionic Terminals Is Regulated in an Activity-Dependent Retrograde Manner
In vertebrates, synaptic activity exerts an important influence on the formation of neural circuits, yet our understanding of its role in directing presynaptic and postsynaptic differentiation during synaptogenesis is incomplete. This study investigates how activity influences synaptic differentiation as synapses mature during early postnatal life. Specifically, we ask what happens to presynapt...
متن کاملDeterminants of Spike Timing-Dependent Synaptic Plasticity
Recent studies show that the precise timing of presynaptic inputs and postsynaptic action potentials influences the strength and sign of synaptic plasticity. In this issue of Neuron, Sjöström and colleagues (2001) determine how this so-called spike timing-dependent plasticity depends on the frequency and strength of the presynaptic inputs.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2005